Lucene search

K
nessusUbuntu Security Notice (C) 2011 Canonical, Inc. / NASL script (C) 2011-2016 Tenable Network Security, Inc.UBUNTU_USN-1204-1.NASL
HistorySep 14, 2011 - 12:00 a.m.

USN-1204-1 : linux-fsl-imx51 vulnerabilities

2011-09-1400:00:00
Ubuntu Security Notice (C) 2011 Canonical, Inc. / NASL script (C) 2011-2016 Tenable Network Security, Inc.
www.tenable.com
38

7.8 High

CVSS2

Attack Vector

NETWORK

Attack Complexity

LOW

Authentication

NONE

Confidentiality Impact

NONE

Integrity Impact

NONE

Availability Impact

COMPLETE

AV:N/AC:L/Au:N/C:N/I:N/A:C

9.8 High

CVSS3

Attack Vector

NETWORK

Attack Complexity

LOW

Privileges Required

NONE

User Interaction

NONE

Scope

UNCHANGED

Confidentiality Impact

HIGH

Integrity Impact

HIGH

Availability Impact

HIGH

CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

0.062 Low

EPSS

Percentile

93.6%

Dan Rosenberg discovered that the Linux kernel TIPC implementation contained multiple integer signedness errors. A local attacker could exploit this to gain root privileges. (CVE-2010-3859)

Dan Rosenberg discovered that multiple terminal ioctls did not correctly initialize structure memory. A local attacker could exploit this to read portions of kernel stack memory, leading to a loss of privacy. (CVE-2010-4075, CVE-2010-4076, CVE-2010-4077)

Dan Rosenberg discovered that the socket filters did not correctly initialize structure memory. A local attacker could create malicious filters to read portions of kernel stack memory, leading to a loss of privacy. (CVE-2010-4158)

Dan Rosenberg discovered that the Linux kernel L2TP implementation contained multiple integer signedness errors. A local attacker could exploit this to to crash the kernel, or possibly gain root privileges. (CVE-2010-4160)

Dan Rosenberg discovered that certain iovec operations did not calculate page counts correctly. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4162)

Dan Rosenberg discovered that the SCSI subsystem did not correctly validate iov segments. A local attacker with access to a SCSI device could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2010-4163, CVE-2010-4668)

Dan Rosenberg discovered that the RDS protocol did not correctly check ioctl arguments. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4175)

Alan Cox discovered that the HCI UART driver did not correctly check if a write operation was available. If the mmap_min-addr sysctl was changed from the Ubuntu default to a value of 0, a local attacker could exploit this flaw to gain root privileges. (CVE-2010-4242)

Brad Spengler discovered that the kernel did not correctly account for userspace memory allocations during exec() calls. A local attacker could exploit this to consume all system memory, leading to a denial of service. (CVE-2010-4243)

Alex Shi and Eric Dumazet discovered that the network stack did not correctly handle packet backlogs. A remote attacker could exploit this by sending a large amount of network traffic to cause the system to run out of memory, leading to a denial of service. (CVE-2010-4251, CVE-2010-4805)

It was discovered that the ICMP stack did not correctly handle certain unreachable messages. If a remote attacker were able to acquire a socket lock, they could send specially crafted traffic that would crash the system, leading to a denial of service.
(CVE-2010-4526)

Dan Carpenter discovered that the Infiniband driver did not correctly handle certain requests. A local user could exploit this to crash the system or potentially gain root privileges. (CVE-2010-4649, CVE-2011-1044)

Kees Cook reported that /proc/pid/stat did not correctly filter certain memory locations. A local attacker could determine the memory layout of processes in an attempt to increase the chances of a successful memory corruption exploit. (CVE-2011-0726)

Timo Warns discovered that MAC partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system or potentially gain root privileges. (CVE-2011-1010)

Timo Warns discovered that LDM partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1012)

Matthiew Herrb discovered that the drm modeset interface did not correctly handle a signed comparison. A local attacker could exploit this to crash the system or possibly gain root privileges.
(CVE-2011-1013)

It was discovered that the /proc filesystem did not correctly handle permission changes when programs executed. A local attacker could hold open files to examine details about programs running with higher privileges, potentially increasing the chances of exploiting additional vulnerabilities. (CVE-2011-1020)

Vasiliy Kulikov discovered that the Bluetooth stack did not correctly clear memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1078)

Vasiliy Kulikov discovered that the Bluetooth stack did not correctly check that device name strings were NULL terminated. A local attacker could exploit this to crash the system, leading to a denial of service, or leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1079)

Vasiliy Kulikov discovered that bridge network filtering did not check that name fields were NULL terminated. A local attacker could exploit this to leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1080)

Nelson Elhage discovered that the epoll subsystem did not correctly handle certain structures. A local attacker could create malicious requests that would hang the system, leading to a denial of service.
(CVE-2011-1082)

Neil Horman discovered that NFSv4 did not correctly handle certain orders of operation with ACL data. A remote attacker with access to an NFSv4 mount could exploit this to crash the system, leading to a denial of service. (CVE-2011-1090)

Johan Hovold discovered that the DCCP network stack did not correctly handle certain packet combinations. A remote attacker could send specially crafted network traffic that would crash the system, leading to a denial of service. (CVE-2011-1093)

Peter Huewe discovered that the TPM device did not correctly initialize memory. A local attacker could exploit this to read kernel heap memory contents, leading to a loss of privacy. (CVE-2011-1160)

Timo Warns discovered that OSF partition parsing routines did not correctly clear memory. A local attacker with physical access could plug in a specially crafted block device to read kernel memory, leading to a loss of privacy. (CVE-2011-1163)

Vasiliy Kulikov discovered that the netfilter code did not check certain strings copied from userspace. A local attacker with netfilter access could exploit this to read kernel memory or crash the system, leading to a denial of service. (CVE-2011-1170, CVE-2011-1171, CVE-2011-1172, CVE-2011-2534)

Vasiliy Kulikov discovered that the Acorn Universal Networking driver did not correctly initialize memory. A remote attacker could send specially crafted traffic to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1173)

Dan Rosenberg discovered that the IRDA subsystem did not correctly check certain field sizes. If a system was using IRDA, a remote attacker could send specially crafted traffic to crash the system or gain root privileges. (CVE-2011-1180)

Ryan Sweat discovered that the GRO code did not correctly validate memory. In some configurations on systems using VLANs, a remote attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2011-1478)

Dan Rosenberg discovered that the X.25 Rose network stack did not correctly handle certain fields. If a system was running with Rose enabled, a remote attacker could send specially crafted traffic to gain root privileges. (CVE-2011-1493)

Timo Warns discovered that the GUID partition parsing routines did not correctly validate certain structures. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1577)

Oliver Hartkopp and Dave Jones discovered that the CAN network driver did not correctly validate certain socket structures. If this driver was loaded, a local attacker could crash the system, leading to a denial of service. (CVE-2011-1598)

Dan Rosenberg discovered that the DCCP stack did not correctly handle certain packet structures. A remote attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1770)

Vasiliy Kulikov and Dan Rosenberg discovered that ecryptfs did not correctly check the origin of mount points. A local attacker could exploit this to trick the system into unmounting arbitrary mount points, leading to a denial of service. (CVE-2011-1833)

Vasiliy Kulikov discovered that taskstats listeners were not correctly handled. A local attacker could expoit this to exhaust memory and CPU resources, leading to a denial of service.
(CVE-2011-2484)

It was discovered that Bluetooth l2cap and rfcomm did not correctly initialize structures. A local attacker could exploit this to read portions of the kernel stack, leading to a loss of privacy.
(CVE-2011-2492)

Fernando Gont discovered that the IPv6 stack used predictable fragment identification numbers. A remote attacker could exploit this to exhaust network resources, leading to a denial of service.
(CVE-2011-2699)

The performance counter subsystem did not correctly handle certain counters. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-2918)

# This script was automatically generated from Ubuntu Security
# Notice USN-1204-1.  It is released under the Nessus Script 
# Licence.
#
# Ubuntu Security Notices are (C) Canonical, Inc.
# See http://www.ubuntu.com/usn/
# Ubuntu(R) is a registered trademark of Canonical, Inc.

if (!defined_func("bn_random")) exit(0);

include("compat.inc");

if (description)
{
  script_id(56192);
  script_version("$Revision: 1.5 $");
  script_cvs_date("$Date: 2016/01/14 15:30:09 $");

  script_cve_id("CVE-2010-3859", "CVE-2010-4075", "CVE-2010-4076", "CVE-2010-4077", "CVE-2010-4158", "CVE-2010-4160", "CVE-2010-4162", "CVE-2010-4163", "CVE-2010-4175", "CVE-2010-4242", "CVE-2010-4243", "CVE-2010-4251", "CVE-2010-4526", "CVE-2010-4649", "CVE-2010-4668", "CVE-2010-4805", "CVE-2011-0726", "CVE-2011-1010", "CVE-2011-1012", "CVE-2011-1013", "CVE-2011-1020", "CVE-2011-1044", "CVE-2011-1078", "CVE-2011-1079", "CVE-2011-1080", "CVE-2011-1082", "CVE-2011-1090", "CVE-2011-1093", "CVE-2011-1160", "CVE-2011-1163", "CVE-2011-1170", "CVE-2011-1171", "CVE-2011-1172", "CVE-2011-1173", "CVE-2011-1180", "CVE-2011-1478", "CVE-2011-1493", "CVE-2011-1577", "CVE-2011-1598", "CVE-2011-1770", "CVE-2011-1833", "CVE-2011-2484", "CVE-2011-2492", "CVE-2011-2534", "CVE-2011-2699", "CVE-2011-2918");
  script_xref(name:"USN", value:"1204-1");

  script_name(english:"USN-1204-1 : linux-fsl-imx51 vulnerabilities");
  script_summary(english:"Checks dpkg output for updated package(s)");

  script_set_attribute(attribute:"synopsis", value: 
"The remote Ubuntu host is missing one or more security-related
patches.");
  script_set_attribute(attribute:"description", value:
"Dan Rosenberg discovered that the Linux kernel TIPC implementation
contained multiple integer signedness errors. A local attacker could
exploit this to gain root privileges. (CVE-2010-3859)

Dan Rosenberg discovered that multiple terminal ioctls did not
correctly initialize structure memory. A local attacker could exploit
this to read portions of kernel stack memory, leading to a loss of
privacy. (CVE-2010-4075, CVE-2010-4076, CVE-2010-4077)

Dan Rosenberg discovered that the socket filters did not correctly
initialize structure memory. A local attacker could create malicious
filters to read portions of kernel stack memory, leading to a loss of
privacy. (CVE-2010-4158)

Dan Rosenberg discovered that the Linux kernel L2TP implementation
contained multiple integer signedness errors. A local attacker could
exploit this to to crash the kernel, or possibly gain root
privileges. (CVE-2010-4160)

Dan Rosenberg discovered that certain iovec operations did not
calculate page counts correctly. A local attacker could exploit this
to crash the system, leading to a denial of service. (CVE-2010-4162)

Dan Rosenberg discovered that the SCSI subsystem did not correctly
validate iov segments. A local attacker with access to a SCSI device
could send specially crafted requests to crash the system, leading to
a denial of service. (CVE-2010-4163, CVE-2010-4668)

Dan Rosenberg discovered that the RDS protocol did not correctly
check ioctl arguments. A local attacker could exploit this to crash
the system, leading to a denial of service. (CVE-2010-4175)

Alan Cox discovered that the HCI UART driver did not correctly check
if a write operation was available. If the mmap_min-addr sysctl was
changed from the Ubuntu default to a value of 0, a local attacker
could exploit this flaw to gain root privileges. (CVE-2010-4242)

Brad Spengler discovered that the kernel did not correctly account
for userspace memory allocations during exec() calls. A local
attacker could exploit this to consume all system memory, leading to
a denial of service. (CVE-2010-4243)

Alex Shi and Eric Dumazet discovered that the network stack did not
correctly handle packet backlogs. A remote attacker could exploit
this by sending a large amount of network traffic to cause the system
to run out of memory, leading to a denial of service. (CVE-2010-4251,
CVE-2010-4805)

It was discovered that the ICMP stack did not correctly handle
certain unreachable messages. If a remote attacker were able to
acquire a socket lock, they could send specially crafted traffic that
would crash the system, leading to a denial of service.
(CVE-2010-4526)

Dan Carpenter discovered that the Infiniband driver did not correctly
handle certain requests. A local user could exploit this to crash the
system or potentially gain root privileges. (CVE-2010-4649,
CVE-2011-1044)

Kees Cook reported that /proc/pid/stat did not correctly filter
certain memory locations. A local attacker could determine the memory
layout of processes in an attempt to increase the chances of a
successful memory corruption exploit. (CVE-2011-0726)

Timo Warns discovered that MAC partition parsing routines did not
correctly calculate block counts. A local attacker with physical
access could plug in a specially crafted block device to crash the
system or potentially gain root privileges. (CVE-2011-1010)

Timo Warns discovered that LDM partition parsing routines did not
correctly calculate block counts. A local attacker with physical
access could plug in a specially crafted block device to crash the
system, leading to a denial of service. (CVE-2011-1012)

Matthiew Herrb discovered that the drm modeset interface did not
correctly handle a signed comparison. A local attacker could exploit
this to crash the system or possibly gain root privileges.
(CVE-2011-1013)

It was discovered that the /proc filesystem did not correctly handle
permission changes when programs executed. A local attacker could
hold open files to examine details about programs running with higher
privileges, potentially increasing the chances of exploiting
additional vulnerabilities. (CVE-2011-1020)

Vasiliy Kulikov discovered that the Bluetooth stack did not correctly
clear memory. A local attacker could exploit this to read kernel
stack memory, leading to a loss of privacy. (CVE-2011-1078)

Vasiliy Kulikov discovered that the Bluetooth stack did not correctly
check that device name strings were NULL terminated. A local attacker
could exploit this to crash the system, leading to a denial of
service, or leak contents of kernel stack memory, leading to a loss
of privacy. (CVE-2011-1079)

Vasiliy Kulikov discovered that bridge network filtering did not
check that name fields were NULL terminated. A local attacker could
exploit this to leak contents of kernel stack memory, leading to a
loss of privacy. (CVE-2011-1080)

Nelson Elhage discovered that the epoll subsystem did not correctly
handle certain structures. A local attacker could create malicious
requests that would hang the system, leading to a denial of service.
(CVE-2011-1082)

Neil Horman discovered that NFSv4 did not correctly handle certain
orders of operation with ACL data. A remote attacker with access to
an NFSv4 mount could exploit this to crash the system, leading to a
denial of service. (CVE-2011-1090)

Johan Hovold discovered that the DCCP network stack did not correctly
handle certain packet combinations. A remote attacker could send
specially crafted network traffic that would crash the system,
leading to a denial of service. (CVE-2011-1093)

Peter Huewe discovered that the TPM device did not correctly
initialize memory. A local attacker could exploit this to read kernel
heap memory contents, leading to a loss of privacy. (CVE-2011-1160)

Timo Warns discovered that OSF partition parsing routines did not
correctly clear memory. A local attacker with physical access could
plug in a specially crafted block device to read kernel memory,
leading to a loss of privacy. (CVE-2011-1163)

Vasiliy Kulikov discovered that the netfilter code did not check
certain strings copied from userspace. A local attacker with
netfilter access could exploit this to read kernel memory or crash
the system, leading to a denial of service. (CVE-2011-1170,
CVE-2011-1171, CVE-2011-1172, CVE-2011-2534)

Vasiliy Kulikov discovered that the Acorn Universal Networking driver
did not correctly initialize memory. A remote attacker could send
specially crafted traffic to read kernel stack memory, leading to a
loss of privacy. (CVE-2011-1173)

Dan Rosenberg discovered that the IRDA subsystem did not correctly
check certain field sizes. If a system was using IRDA, a remote
attacker could send specially crafted traffic to crash the system or
gain root privileges. (CVE-2011-1180)

Ryan Sweat discovered that the GRO code did not correctly validate
memory. In some configurations on systems using VLANs, a remote
attacker could send specially crafted traffic to crash the system,
leading to a denial of service. (CVE-2011-1478)

Dan Rosenberg discovered that the X.25 Rose network stack did not
correctly handle certain fields. If a system was running with Rose
enabled, a remote attacker could send specially crafted traffic to
gain root privileges. (CVE-2011-1493)

Timo Warns discovered that the GUID partition parsing routines did
not correctly validate certain structures. A local attacker with
physical access could plug in a specially crafted block device to
crash the system, leading to a denial of service. (CVE-2011-1577)

Oliver Hartkopp and Dave Jones discovered that the CAN network driver
did not correctly validate certain socket structures. If this driver
was loaded, a local attacker could crash the system, leading to a
denial of service. (CVE-2011-1598)

Dan Rosenberg discovered that the DCCP stack did not correctly handle
certain packet structures. A remote attacker could exploit this to
crash the system, leading to a denial of service. (CVE-2011-1770)

Vasiliy Kulikov and Dan Rosenberg discovered that ecryptfs did not
correctly check the origin of mount points. A local attacker could
exploit this to trick the system into unmounting arbitrary mount
points, leading to a denial of service. (CVE-2011-1833)

Vasiliy Kulikov discovered that taskstats listeners were not
correctly handled. A local attacker could expoit this to exhaust
memory and CPU resources, leading to a denial of service.
(CVE-2011-2484)

It was discovered that Bluetooth l2cap and rfcomm did not correctly
initialize structures. A local attacker could exploit this to read
portions of the kernel stack, leading to a loss of privacy.
(CVE-2011-2492)

Fernando Gont discovered that the IPv6 stack used predictable
fragment identification numbers. A remote attacker could exploit this
to exhaust network resources, leading to a denial of service.
(CVE-2011-2699)

The performance counter subsystem did not correctly handle certain
counters. A local attacker could exploit this to crash the system,
leading to a denial of service. (CVE-2011-2918)");
  script_set_attribute(attribute:"see_also", value:"http://www.ubuntu.com/usn/usn-1204-1/");
  script_set_attribute(attribute:"solution", value:"Update the affected package(s).");
  script_set_cvss_base_vector("CVSS2#AV:N/AC:L/Au:N/C:N/I:N/A:C");
  script_set_attribute(attribute:"exploitability_ease", value:"Exploits are available");
  script_set_attribute(attribute:"exploit_available", value:"true");
  script_set_attribute(attribute:"exploited_by_malware", value:"true");
  script_set_attribute(attribute:"patch_publication_date", value:"2011/09/13");

  script_set_attribute(attribute:"cpe", value:"cpe:/o:canonical:ubuntu_linux");
  script_set_attribute(attribute:"plugin_type", value:"local");
 script_set_attribute(attribute:"plugin_publication_date", value: "2011/09/14");
  script_end_attributes();
    
  script_category(ACT_GATHER_INFO);
  script_family(english:"Ubuntu Local Security Checks");

  script_copyright("Ubuntu Security Notice (C) 2011 Canonical, Inc. / NASL script (C) 2011-2016 Tenable Network Security, Inc.");

  script_dependencies("ssh_get_info.nasl");
  script_require_keys("Host/Ubuntu", "Host/Ubuntu/release", "Host/Debian/dpkg-l");

  exit(0);
}

include("ubuntu.inc");

if (!get_kb_item("Host/local_checks_enabled")) exit(0, "Local checks are not enabled.");
if (!get_kb_item("Host/Ubuntu/release")) exit(0, "The host is not running Ubuntu.");
if (!get_kb_item("Host/Debian/dpkg-l")) exit(1, "Could not obtain the list of installed packages.");

flag = 0;

if (ubuntu_check(osver:"10.04", pkgname:"linux-image-2.6.31-610-imx51", pkgver:"2.6.31-610.28")) flag++;

if (flag)
{
  if (report_verbosity > 0) security_hole(port:0, extra:ubuntu_report_get());
  else security_hole(0);
  exit(0);
}
else exit(0, "The host is not affected.");
VendorProductVersionCPE
canonicalubuntu_linuxcpe:/o:canonical:ubuntu_linux

References

7.8 High

CVSS2

Attack Vector

NETWORK

Attack Complexity

LOW

Authentication

NONE

Confidentiality Impact

NONE

Integrity Impact

NONE

Availability Impact

COMPLETE

AV:N/AC:L/Au:N/C:N/I:N/A:C

9.8 High

CVSS3

Attack Vector

NETWORK

Attack Complexity

LOW

Privileges Required

NONE

User Interaction

NONE

Scope

UNCHANGED

Confidentiality Impact

HIGH

Integrity Impact

HIGH

Availability Impact

HIGH

CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

0.062 Low

EPSS

Percentile

93.6%